GABA-like immunoreactivity in *Biomphalaria*: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails

Lee O. Vaasjo | Alexandra M. Quintana | Mohamed R. Habib | Paola A. Mendez de Jesus | Roger P. Croll | Mark W. Miller

1Institute of Neurobiology and Department of Anatomy & Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
2Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
3Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada

Correspondence
Mark W. Miller, Institute of Neurobiology, 201 Blvd del Valle, San Juan, PR 00901. Email: mark.miller@upr.edu

Abstract
The simpler nervous systems of certain invertebrates provide opportunities to examine colocalized classical neurotransmitters in the context of identified neurons and well defined neural circuits. This study examined the distribution of γ-aminobutyric acid-like immunoreactivity (GABAli) in the nervous system of the panpulmonates *Biomphalaria glabrata* and *Biomphalaria alexandrina*, major intermediate hosts for intestinal schistosomiasis. GABAli neurons were localized in the cerebral, pedal, and buccal ganglia of each species. With the exception of a projection to the base of the tentacle, GABAli fibers were confined to the CNS. As GABAli was previously reported to be colocated with markers for dopamine (DA) in five neurons in the feeding network of the euopisthobranch gastropod *Aplysia californica* (Díaz-Ríos, Oyola, & Miller, 2002), double-labeling protocols were used to compare the distribution of GABAli with tyrosine hydroxylase immunoreactivity (THli). As in Aplysia, GABAli-THli colocalization was limited to five neurons, all of which were located in the buccal ganglion. Five GABAli-THli cells were also observed in the buccal ganglia of two other intensively studied panpulmonate species, *Lymnaea stagnalis* and *Helisoma trivolvis*. These findings indicate that colocalization of the classical neurotransmitters GABA and DA in feeding central pattern generator (CPG) interneurons preceded the divergence of euopisthobranch and panpulmonate taxa. These observations also support the hypothesis that heterogastropod feeding CPG networks exhibit a common universal design.

KEYWORDS
Biomphalaria glabrata, *Biomphalaria alexandrina*, catecholamines, dopamine, *Helisoma trivolvis*, *Lymnaea stagnalis*, Immunostar RRID: AB 572268, rabbit anti-GABA antibody, schistosomiasis, Sigma-Aldrich RRID: AB 477652, tyrosine hydroxylase antibody

1 | INTRODUCTION

Increasing evidence supports the hypothesis that classical neurotransmitters can be colocalized in individual neurons (Borisovska & Westbrook, 2014; Gutierrez, 2009; Seal & Edwards, 2006; Vaaga, 2014). One such combination, γ-aminobutyric acid (GABA) with dopamine (DA), has been reported in several cell types within vertebrate nervous systems, including periglomerular cells of the mouse olfactory bulb (Borisovska, Bensen, Chong, & Westbrook, 2013; Liu, Plachez, Shao, Puche, & Shipley, 2013; Maher & Westbrook, 2008), retinal amacrine cells (Hirasawa, Contini, & Raviola, 2015; Hirasawa, Puopolo, & Raviola, 2009), mouse nigrostriatal and ventral tegmental cells (Tritsch, Ding, & Sabatini, 2012; Tritsch, Granger, & Sabatini, 2016; Trudeau et al., 2014), nerve terminals of the Xenopus laevis pituitary (de Rijk, van Strien, & Roubos, 1992), and neurons in the...
spinal cord of the sea lamprey (Barreiro-Iglesias, Villar-Cerviño, Anadón, & Rodicio, 2009). While proposed mechanisms of release from GABA-DA neurons range from independent nonsynaptic volume transmission in the retina to co-release from shared synaptic vesicles in the striatum, much remains unknown about the functional consequences of this neuronal phenotype and its occurrence across phylogeny (Kim et al., 2015).

It has been proposed the simpler nervous systems of certain invertebrates can provide opportunities to further examine colocalized classical neurotransmitters in the context of identified neurons and defined neural circuits (Miller, 2009). In gastropod molluscs, a neurotransmitter role for GABA was initially suggested by pharmacological studies in which it was found to produce both excitatory and inhibitory responses upon application to snail neurons (Gerschenfeld & Tauc, 1961; Walker, Crossman, Woodruff, & Kerkt, 1971; Walker, Aranza, Kerkt, & Woodruff, 1975). Biochemical approaches demonstrated the presence of GABA, its synthesis, and its uptake in the central nervous systems of several gastropod species (Cottrell, 1977; Dolezalova, Giacobini, & Stepita-Klauco, 1973; Osborne, Briel, & Neuhoff, 1971). The localization of GABA to specific neurons within gastropod nervous systems was demonstrated with autoradiographic and immunohistological techniques in Planorbis (Turner & Cottrell, 1978), Limax (Cook & Gelperin, 1988), Helisoma (Richmond, Bulloch, Bauce, & Lukowiak, 1991), Clione (Arshavsky et al., 1993; Norekian, 1999), Helix (Hernández, 1994), Aplysia (Diaz-Rios et al., 1999), Pleurobranchaea, and four nudibranch species (Gunaratne, Sakurai, & Katz, 2014; Gunaratne & Katz, 2016).

DA is also well established as major neurotransmitter in the gastropod central nervous system where it, like GABA, can produce both excitatory and inhibitory synaptic actions (Sweeney, 1963; Osborne & Cottrell, 1971; Ascher, 1972; Berry & Cottrell, 1973; McCaman, Ono, & McCaman, 1979). Early studies used aldehyde- or glyoxylate-induced fluorescence techniques to demonstrate the presence of catecholamine-containing neurons in both the central nervous system and periphery of several species (Chiang et al., 1974; Croll, 1987; Croll, Voronezhskaya, Hiripi, & Elekes, 1999; Salimova, Sakharov, Milosevic, Turpaev, & Rakic, 1987a; Salimova, Sakharov, Milosevic, & Rakic, 1987b; Tritt, Lowe, & Byrne, 1983). Biochemical analyses also demonstrated significant levels of catecholamines, particularly dopamine, within the nervous system of several gastropods (Chiang et al., 1974; Croll et al., 1999; McCaman et al., 1973; McCaman, 1984; Walker, 1986). Immunohistochemical localization of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, was subsequently shown to label neurons that utilize DA as a neurotransmitter in gastropods (Croll et al., 1999; Croll, 2001).

In addition to their individual roles as gastropod neurotransmitters, evidence suggests that GABA and DA may co-exist in specific neurons in the euopisthobranch gastropod Aplysia californica (Diaz-Rios et al., 2002). The colocalization of GABA and DA in five identified neurons within the feeding central pattern generator circuit of Aplysia enabled investigators to probe their respective contributions to synaptic signaling and specification of motor patterns in a multifunctional motor system (Due et al., 2004; Diaz-Rios & Miller, 2005, 2006; Svensson et al., 2014).

The present study was designed with three objectives: (a) We first mapped the distribution of GABA-like immunoreactivity (li) in the nervous systems of two species of panpulmonate snails, Biomphalaria glabrata and Biomphalaria alexandrina. In previous studies, we fully mapped the localization of catecholamines in the nervous systems of these species (Vallejo et al., 2014) and showed that TH provided a reliable means of labeling neurons that utilize DA as a neurotransmitter (Vallejo et al., 2014). This work is part of our investigation of neurotransmitters in intermediate snail hosts for larval trematodes that cause the tropical disease schistosomiasis (see also Delgado, Vallejo, & Miller, 2012; Habib et al., 2015; Mansour et al., 2017). (b) With complete maps of putative, GABAergic and dopaminergic neurons in place, we next directly assessed the prospect of GABA-DA colocalization in B. glabrata using double labelling immunohistochemical techniques. (c) Finally, we also examined colocalization of GABA and TH in the feeding motor systems of Lymnaea stagnalis and Helisoma trivolvis, two panpulmonate species in which the neural control of feeding has been intensively studied.

2 | MATERIALS AND METHODS

2.1 | Immunohistochemistry

Mature specimens (8–10 mm shell diameter) of Biomphalaria glabrata, Biomphalaria alexandrina and Helisoma trivolvis and juvenile specimens of Lymnea stagnalis (also 8–10 mm shell length) were dissected in Petri dishes lined with Sylgard (Dow Chemical) and containing pond snail saline (see Delgado et al., 2012). Biomphalaria and Lymnea ganglia were incubated in 0.5% protease type XIV (Sigma-Aldrich, St. Louis MO; Product #P5147) for 8–10 min at room temperature. Following washes (5 ×, 10–20 min) with snail saline, Biomphalaria and Lymnea ganglia were fixed with 4% paraformaldehyde (4°C, 1 hr). They were then treated with a heat-induced epitope retrieval (HIER) protocol (Abcam IHC antigen retrieval protocol). Samples were incubated in a heated (60°C, 30 min) sodium citrate buffer (10 mM trisodium citrate dihydrate [Sigma-Aldrich], 0.05% Tween 20 [Fisher Scientific], pH 6.0). Helisoma tissues were fixed overnight in Zamboni’s fixative (125 ml of 16% paraformaldehyde, 150 ml saturated picric acid solution per liter phosphate buffer, pH 7.3). They were not treated with protease and were not subjected to the HIER protocol.

For peripheral tissues, protocols were used as described previously (Habib et al., 2015). Tissues were incubated in .25% collagenase IV (Sigma-Aldrich, Product #C-5138) for 2–3 hr, then placed between two glass slides spaced apart with a small piece of modeling clay, incubated at 4°C for 25–30 min and then fixed for 1 hr by perfusing 4% paraformaldehyde between the slides. To remove the fixative, tissues were removed from between the slides, placed in microcentrifuge tubes and washed (5 ×, 30 min) with 0.5% PBS-T (PBS-T: 0.2 M PBS buffer, 0.5% Triton X-100).

GABA li was detected with a polyclonal rabbit antibody (RRID Sigma-Aldrich, Product #A2052) generated against GABA conjugated to bovine serum albumin (BSA). Dot blots showed that this antibody recognizes GABA and not BSA (Sigma-Aldrich data sheet).
gastropods, neurons labeled with this antibody have been shown to produce GABAergic synaptic signals (Jing, Vilim, Wu, Park, & Weiss, 2003; Wu et al., 2003). Catecholaminergic neurons were detected with a mouse monoclonal antibody (RRID: Immunostar, Stillwater MN; product No. 22941) generated against rat tyrosine hydroxylase [lot LNC1 purified from rat pheochromocytoma (PC12) cells]. This antibody is reported to possess wide species cross-reactivity, due to its recognition of a highly conserved epitope in the midportion of the TH molecule (Immunostar specification sheet 22914). It specifically labels neurons that are stained with several independent catecholaminergic markers, including the glyoxylic acid (Kabotyanski, Baxter, & Byrne, 1998; Rathouz & Kirk, 1988) and the formaldehyde (Fa)-glutaraldehyde (Glu) histofluorescent techniques (Croll, 2001; Díaz-Ríos et al., 2002; Goldstein & Schwartz, 1989). We previously reported that synaptic signals

FIGURE 1 Comparison of GABA-li and TH-li on the dorsal surface of the B. glabrata cerebral ganglion. (a) GABA-li on the dorsal surface of the right cerebral ganglion (R Cer g.). Image also includes the ventral surface of the right pedal ganglion (R Pd g.) and the dorsal surface of the right pleural ganglion (R Pl g.). GABA-li fibers of varying caliber were present in the tentacular nerve (T n). Calibration bar = 100 μm applies to (a–c). (b) TH-li on the dorsal surface of the right pedal ganglion. A large bundle of TH-li fibers courses through the center of the T n. (c) Merge of (a) and (b) shows that the GABA-li fibers and the TH-li bundle occupy distinct regions of the tentacular nerve. Dashed rectangles in (a–c) denote regions shown at higher magnification in (d–f), respectively. (d) Four to six small GABA-li cells were embedded within the neuropil at the origin of the tentacular nerve. Calibration bar = 30 μm applies to (d–f). (e) A cluster of small TH-li neurons (arrow) and one larger cell (arrowhead) with a projection oriented toward the T n. were also located at the base of the nerve. (f) Merge of (d) and (e) shows that GABA-li and TH-li are not colocalized in the neurons at the origin of the T n. (g) In the periphery, the GABA-li fibers in the T n. reach the epithelium at the base of the tentacle. Dotted and dashed rectangles indicate the regions shown at higher magnification in (h) and (i), respectively. Calibration bar = 50 μm. (h) The GABA-li fibers divide into smaller bundles and fan out to innervate the skin. Some of the larger caliber fibers are smooth (arrow), while en passant swellings are observed in many of the finer fibers (arrowheads). Calibration bar = 20 μm. (i) The fibers terminate as varicose fibers in the skin at the base of the tentacle. Calibration bar = 20 μm [Color figure can be viewed at wileyonlinelibrary.com]
produced by neurons labeled with this antibody in *B. glabrata* were blocked by the dopamine antagonist sulpiride (Vallejo et al., 2014).

Tissues of all species were incubated in a solution containing both primary antibodies (TH: 1:100; GABA: 1:200) diluted in PBS-Tx (0.25% Triton X-100, 1% Bovine Serum Albumin V (IgG free), 2% normal goat serum, 1% dimethyl sulfoxide in 0.2 M PBS) at 4°C for 5 days (Gunaratne et al., 2014; Vallejo et al., 2014). Antibody dilutions were based upon prior reports for wholemount immunohistochemistry of gastropod ganglia (Croll, 2001; Díaz-Ríos et al., 1999; Díaz-Ríos & Miller, 2002; Vallejo et al., 2014). Following repeated PBS-T washes (5×, 20 min, room temperature), tissues were incubated in the dark in second antibodies conjugated to fluorescent markers (Alexa 488 goat anti-mouse IgG (H + L) conjugate; Molecular Probes and Alexa 546 goat anti-rabbit IgG (H + L) conjugate; Molecular Probes). The second antibody dilutions ranged from 1:500 to 1:1,000. Following final PBS-T washes (5×, 20 min, room temperature) ganglia were placed in glycerol: PBS (6:1).

Laser scanning confocal image stacks of fluorescent immunohistochemical labeling were acquired on a Nikon A1R resonant scanning...
confocal microscope using 10× and 20× objectives. Some high magnification images were taken using the NIS Elements Nyquist sampling setting. Whole brain images were collected using a Tile scan at 3×2 and Stitching at 15%. Series of optical sections at 0.5–1.5 μm intervals were used to make maximum intensity projections and merged images using the open source ImageJ Java-based image processing and analysis program (National Institutes of Health; http://imagej.nih.gov/ij/). Plates were assembled and contrast adjustment of figures was implemented using Microsoft PowerPoint (v. 14.0, Microsoft Corp., Redmond, WA). Schematic diagrams were created in Illustrator CS2 (Adobe Systems). Results reported in this study were observed in a minimum of 7 specimens of each species.

Protocols conducted on *B. glabrata* were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Puerto Rico Medical Sciences Campus (UPR-MSC; Protocol #3220110). Protocols conducted on *B. alexandrina* were approved by the Animal Care Committee of Dalhousie University (Protocol #I13-06). UPR-MSC IACUC protocol #3220109 was approved for the experiments conducted on *Helisoma trivolvis* and *Lymnaea stagnalis*.

3 | RESULTS

As no consistent differences were observed between the localization of GABA-like immunoreactivity in *B. glabrata* and *B. alexandrina*, the following description is applicable to both species. Double labeling experiments were performed on *B. glabrata* to compare the locations of GABA-immunoreactive cells and neurons that exhibit TH-like

FIGURE 3 Comparison of GABA-like (GABAli) and TH-like (THli) neurons on the dorsal surface of the pedal ganglion. (a) A bilateral cluster of small (10–15 μm) neurons (arrowheads) was located in the lateral region of each pedal ganglion. While a second anteromedial cluster (arrow) was present in the right pedal ganglion (R Pe g.) near the origin of the anterior pedal nerve (A Pe n.), the left pedal ganglion (L Pe g.) contained a large (25–30 μm) unpaired neuron (labeled LPeD2) in a comparable position. A stout fiber projected from LPeD2 toward the pedal-pleural connective. A second small immunoreactive cell was often obscured by LPeD2 (inset from another preparation. (b) THli in the same preparation as (a). The unpaired giant LPeD1 neuron projects a large axon toward the left pedal-pleural connective. A solitary immunoreactive cell (10–15 μm) was located in the central region of each pedal ganglion (arrows) and a smaller cell (arrowhead) was embedded in the neuropil at the base of the anterior pedal nerve (A Pe n.). (c) Merge of (a) and (b). Dashed and dotted boxes indicate regions shown at higher magnification in (f) and (i), respectively. Calibration bar = 50 μm applies to (a–c). (d) The lateral cluster of GABA-like neurons (arrowhead) in the left pedal ganglion was located near the curvature of the LPeD2 axon (arrow). (e) The solitary TH-like neuron (arrow) was located anterior to the curvature of the LPeD1 axon. (f) Merged image of (d) and (e) shows that the lateral TH-like neuron is not located within the lateral cluster of GABA-like cells. Calibration bar = 30 μm applies to (d–f). (g) Higher magnification of the two clusters of GABA-like neurons (arrow, arrowhead) on the dorsal surface of the right pedal ganglion. (h) Individual TH-like neurons are also located near the origins of the A Pe n. and the C Pe n. (i) Merged image of (g) and (h) shows that the dorsal TH-like immunoreactive neurons are near, but not part of the GABA-like clusters. Calibration bar = 20 μm applies to (g–i) [Color figure can be viewed at wileyonlinelibrary.com]
immunoreactivity (Figures 1–7). In some cases, higher definition of GABAli cell structure was obtained in single labeling experiments on B. alexandrina (Figure 1g–i).

3.1 | Cerebral ganglion

On the dorsal surface of the cerebral ganglion, GABAli fibers were present in the tentacular nerve (T n) and in four to six small neurons near the origin of the T n. (Figure 1a,d, arrows). As reported by Vallejo et al. (2014), the T n. also contained a bundle of THli fibers that originated from small peripheral cells in the tentacle epithelium. The THli fiber bundle was more compact than the GABAli axons and occupied a distinct portion of the nerve (Figure 1b,e). THli neurons were also observed near the origin of the T n. (Figure 1b,e, arrowheads). Merged images of GABAli and THli did not reveal instances of colocalization on the dorsal surface of the cerebral ganglion (Figure 1c,f).

Experiments were performed to trace the T n. GABAli fibers to the periphery (Figure 1g–i). A loose bundle of axons projected to the epithelium at the base of the tentacle (Figure 1g). The fibers were heterogeneous in diameter, with some having smooth contours and others en passant varicosities. They underwent extensive branching and terminated as varicose fibers below the surface of the epithelium at the

FIGURE 4 Comparison of GABAli and THli on the ventral surface of the pedal ganglion. (a) Right and left pedal ganglia (R Pe g., L Pe g.). Three clusters of four to six small (10–15 μm) GABAli cells (arrows) were located in the lateral R Pe g. Two clusters (arrows) were located in similar positions in the L Pe g. (b) THli on the ventral surface of the pedal ganglia; same preparation as (a). Two clusters of six to eight small (10–15 μm) cells were present in each pedal ganglion, one near the origin of the posterior pedal nerve (P Pe n.; arrows) and another in the anterolateral quadrant (arrowheads). (c) Merged (a) and (b) images show that the lateral GABAli and THli clusters are contiguous. Dashed and dotted rectangles indicate the regions shown at higher magnification in (d–f) and (g–i), respectively. Calibration bar = 40 μm applies to (a–c). (d) Three clusters of GABAli neurons (arrows) on the ventral surface of the right pedal ganglion. (e) Two clusters of THli neurons (arrowheads) on the ventral surface of the right pedal ganglion. (f) Merge of (d) and (e) shows that the lateral THli and GABAli clusters are contiguous, but the GABAli cluster appears to be more superficial. Calibration bar = 20 μm applies to (d–f). (g) Two clusters of GABAli neurons (arrows) on the ventral surface of the left pedal ganglion. (h) Two clusters of THli neurons (arrowheads) on the ventral surface of the right pedal ganglion. (i) Merged of (g) and (h) shows that the lateral THli and GABAli clusters are contiguous, but the THli cluster appears to be more superficial. Calibration bar = 20 μm applies to (g–i) [Color figure can be viewed at wileyonlinelibrary.com]
base of the tentacle (Figure 1h,i). It has been proposed that the major
site of chemoreceptors for food detection in
Biomphalaria
is located in
the body wall at the base of the tentacle, suggesting a role for GABA in
processing sensory information (Townsend, 1974; see Discussion). No
peripheral GABAl cell bodies were detected and no GABAl fibers pro-
jected into the tentacle.

On the ventral surface of the cerebral ganglion, a dense network
of GABAl fibers was located in the anterolateral region of each hemi-
ganglion (Figure 2a). Two to three small (10–20 \(\mu m \)) GABAl neurons
(Figure 2d, arrowheads) were observed near the origin of the cerebral-
buccal connective (see also Figure 2g). Four to five GABAl fibers were
present in each cerebral-buccal connective (C-b c.) and in the cerebral
commissure (C c.). No GABAl fibers were detected in the medial lip
nerve (Figure 2d–f, M Lip n.), the lateral lip nerve (Figure 2d–f, L Lip n.),
or the penis nerve.

A previous study showed that prominent THAl fiber systems in the
lip nerves originate predominantly from peripheral neurons (Vallejo
et al., 2014). A group of THAl central neurons was observed in the
anterolateral region of the cerebral ganglion, however (Figure 2e,h, arrow-
heads), prompting double-labeling experiments to test for the presence
of GABA-TH colocalization. Merged images of GABAl and THAl fiber sys-
tems are largely segregated into the anterior and posterior regions of the ganglia, respectively. While there is a major projection of THAl fibers toward the periphery, the GABAl fibers are confined to the CNS. A few GABAl immunoreactive fibers enter the I R Pa n, but termi-
nate within a short distance. Calibration bar = 30 \(\mu m \) applies to (a–c).

3.2 | Pedal ganglion

Two tightly apposed GABAl cell bodies were positioned on the dorsal
surface of the left pedal ganglion between the origin of the anterior
pedal nerve and the pedal commissure (Figure 3a, inset). The larger
(25–30 \(\mu m \)) of these cells, termed LPeD2, was the largest GABAl neu-
ron in the entire CNS. It was located in a slightly more lateral position
than its smaller (15–20 \(\mu m \)) neighbor. LPeD2 gave rise to a large axon
that coursed in a posteriorlateral direction toward the pedal-pleural con-
nective, medial to the axon of the giant dopaminergic cell LPeD1 (Val-
lejo et al., 2014; Figure 3a–c, d–f).
A cluster of four smaller (10–15 μm) posterolateral GABAli neurons was located near the axon of LPeD2 (Figure 3a,d, arrowheads). A similar cluster was observed in the right pedal ganglion near the confluence of the central pedal nerve and the pedal-pleural connective (Figure 3a,g, arrowheads). A second group of small (10–15 μm) GABAli neurons was present in the right pedal ganglion near the origin of the anterior pedal nerve (Figure 3a,g, arrows). No GABAli fibers were detected in the pedal nerves.

In a prior report, small THli neurons were observed in the dorsolateral regions of the pedal ganglion near the origins of the pedal nerves (Vallejo et al., 2014). Preparations that were labeled for GABAli (Figure 3a,d,g) were therefore processed for THli (Figure 3b,e,h) in order to determine the relative positions of these two systems and to test for their colocalization. Single THli neurons were located near both posterolateral GABAli clusters (Figure 3i, arrowhead) and within the cluster at the base of the anterior pedal nerve (Figure 3i, arrow), but in no case was THli colocalized with GABAli.

On the ventral surface of the pedal ganglia, clusters of small (10–15 μm) GABAli neurons were observed lateral to the origin of each posterior pedal nerve (Figure 4a,d,g, arrows). While similar groups of THli cells were located in close proximity (Figure 4b,e,h, arrowheads), no instances of colocalization were detected when images of GABAli and THli were merged (Figure 4c,f,i).

3.3 Pleural, parietal, and visceral ganglia
No GABAli cells were detected in the pleural, parietal, or visceral ganglia of B. glabrata. A rich network of GABAli fibers coursed through the pleural and parietal ganglia, giving rise to fine branches and terminals (Figure 5a). While several THli fibers were also observed, they did not exhibit extensive branching (Figure 5b). When images of GABAli and THli were merged (Figure 5c), the THli fibers appeared to occupy more lateral positions and no clear instances of colocalization were detected. Several large THli fibers projected to the parietal nerves and a few fine GABAergic axons terminated in the initial segments of these nerves.

GABAli fibers and terminals were present throughout the central regions of the visceral and left parietal ganglia (Figure 5d). The THli systems in these ganglia exhibited less branching (Figure 5e). While several THli fibers projected to the peripheral nerves, the GABAli system was confined to the CNS (Figure 5f). No evidence for GABAli-THli colocalization was detected.
3.4 | Buccal ganglion

A prominent system of GABA\textsubscript{A} fibers coursed through the core of the buccal ganglion (Figure 6a). Large caliber fibers were present in the cerebral-buccal connective and crossing the buccal commissure. No GABA\textsubscript{A} fibers were present in the buccal nerves.

A single GABA\textsubscript{A} neuron was located on the ventral surface of each buccal hemiganglion (Figure 6a,d). A fiber projected from each cell in the medial direction joining the central GABA\textsubscript{A} neuropil. When preparations were processed for TH\textsubscript{II}, only two ventral neurons were labeled (Figure 6b,e; see also Vallejo et al., 2014). Merging the images for GABA\textsubscript{A} and TH\textsubscript{II} showed that they were labeling the same cells (Figure 6c,f).

Five to seven GABA\textsubscript{A} neurons were dispersed across the dorsal surface of each buccal hemiganglion (Figure 7a). While labeling of the two hemiganglia was generally symmetrical, one buccal GABA\textsubscript{A} neuron was only present in the right hemiganglion, adjacent to the buccal commissure (Figure 7a, arrow). When TH\textsubscript{II} was compared to GABA\textsubscript{A}, colocalization was observed in the unpaired cell (Figure 7b,c,e,f, arrows) and in one lateral neuron near the origin of the C-b c. (Figure 7b,c,e,f, arrowheads).

3.5 | Buccal ganglia of lymnaea stagnalis and helisoma trivolvis

The limited occurrence of GABA\textsubscript{A} –TH\textsubscript{II} colocalization in five buccal ganglion neurons in B. glabrata was in agreement with our previous observations in the marine euopisthobranch Aplysia californica (Díaz-Ríos et al., 2002; Díaz-Ríos & Miller 2005, 2006). It was therefore of
interest to examine whether this pattern of colocalization was also present in the buccal ganglia of other panpulmonate species in which the feeding central pattern generators have been intensively studied.

In *Lymnaea stagnalis*, a single GABAli neuron was located on the ventral surface of each buccal hemiganglion (Figure 8a,d). THli was also observed in only two ventral cells (Figure 8b,e). Merging the images for GABAli and THli showed that both protocols were labeling the same pair of cells (Figure 8c,f). The ventral GABAli–THli cells of *Lymnaea* were located in a similar position as those of *Biomphalaria*, slightly posterior to the central fiber system. As observed with the ventral GABAli–THli cells of *B. glabrata* (Figure 6), a fiber projected in the anteromedial direction toward the buccal commissure (arrow). THli in the same field of view as (d). (f) Merge of (d) and (e) confirms colocalization of GABAli and THli in a single ventral neuron. *Calibration bar* = 25 μm, applies to (d–f) [Color figure can be viewed at wileyonlinelibrary.com]

The colocalization of GABAli and THli was also observed in five neurons in the buccal ganglion of *Helisoma trivolvis* (Figure 10). A bilateral pair of cells on the ventral surface was located near the fiber tract connecting the two hemiganglia (Figure 10a–c; arrows). On the dorsal surface, GABAli and THli were colocalized in a pair of lateral neurons (Figure 10d–f, arrows) and in an unpaired medial cell in the right hemiganglion (Figure 10d–f, arrowheads). The medial GABA-THli neuron gave rise to two fibers that joined the central tract (Figure 10g–i, arrows).

4 | DISCUSSION

4.1 | GABA-like immunoreactivity in the CNS of *biomphalarias* spp

The distributions of GABAli neurons in *B. glabrata* and *B. alexandrina* were indistinguishable (Figure 11). GABAli cell bodies were limited to the cerebral, pedal, and buccal ganglia, in agreement with observations in other panpulmonate species, such as *Helix pomatia* (Hernádi, 1994), *Helisoma trivolvis* (Richmond et al., 1991), and *Limax maximus* (Cooke & Gelperin, 1988). A broader distribution, including cells in the parietal
and visceral ganglia, was reported in *Lymnaea stagnalis* (Hatakeyama & Ito, 2000). The presence of GABAergic fibers in each of the connectives joining the central ganglia suggests an involvement of GABAergic neurons in the coordination or specification of behavior in *Biomphalaria*. Two GABAergic cerebral-buccal interneurons (CBIs), termed CBI-12 and CBI-3, were identified in *Aplysia* (Euopisthobranchia, Anaspidea) and shown to exert specific GABA-mediated actions on the feeding CPG (Jing et al., 2003; Wu et al., 2003; see also Narusuye et al. 2005). In *Clione limacina* (Euopisthobranchia, Pteropoda) a GABAergic CBI termed Cr-BM coordinates three motor programs that implement an elaborate carnivorous motor program (Norekian & Malyshev, 2005). The presence of GABAergic fibers in the cerebral-buccal connective and GABAergic cell bodies near the origin of the C-b c. indicates that similar higher order GABAergic control of feeding could operate in *Biomphalaria* and other panpulmonates.

The presence of major GABAergic tracts in the commissures of the cerebral, pedal, and buccal ganglia is consistent with observations in other panpulmonate species as well as in euopisthobranchs and nudibranchs (Cooke & Gelperin, 1988; Díaz-Ríos et al., 1999; Gunaratne et al., 2014; Gunaratne & Katz, 2016; Richmond et al., 1991). These paired ganglia control motor behaviors such as feeding and locomotion that require bilateral coordination. The participation of GABAergic signaling in maintaining bilateral coordination has been demonstrated in the buccal CPG of *Aplysia* where two GABAergic interneurons, B34 and B40, exert predominant synaptic actions in the contralateral buccal hemiganglion (Hurwitz, Kupfermann, & Susswein, 1997; Jing et al., 2003). Interestingly, both B40 and B34 also project to the cerebral ganglion via the contralateral cerebral-buccal connective (Hurwitz et al., 1997; Jing et al., 2003). The presence of GABA in buccal-cerebral interneurons (BCIs) as well as CBIs (see above) indicates that this neurotransmitter system plays a bidirectional role in interganglionic signaling in the *Aplysia*.
feeding system. Further characterization of GABAergic CBIs and BCIs in the panpulmonates should increase our understanding of how this neurotransmitter system contributes to feedforward and feedback signaling between higher order regulatory elements and the feeding CPGs.

In addition to a GABAergic involvement in the central control of motor systems, the projection of fibers to the periphery via each tentacular nerve suggests a limited sensory function. The termination of this bundle in the skin near the base of the tentacle is in agreement with previous studies in Biomphalaria that found the skin behind the origin of the tentacle to be highly sensitive to food application (Townsend, 1974). As snails continued to orient toward applied food following ablation of the tentacles, this skin region was proposed to be the major chemoreceptive organ for food-finding. The tentacles were suggested to function mainly to guide chemostimulants to their base via ciliary currents (Townsend, 1974). While pharmacological evidence supports a role for GABA in chemoreceptive function in pulmonates (Ito, Kimura, Watanabe, Kirino, & Ito, 2004; Nezlin & Voronezhskaya, 1997), GABAergic innervation of cephalic sensory organs has not been reported in other species.

4.2 | GABA|THI colocalization

Colocalization of GABA| and THI was previously observed in the eupisthobranch Aplysia californica (Díaz-Ríos et al., 2002). While GABA| and THI neurons were present throughout the central nervous system of Aplysia, their colocalization was limited to five neurons in the paired buccal ganglia. The present study surveyed the distribution of GABA| Biomphalaria glabrata, Helisoma trivolvis, and Lymnaea stagnalis and found that colocalized GABA| and THI was similarly limited to five buccal neurons. In Aplysia, GABA|THI colocalization occurs in two identified pairs of interneurons, termed B20 and B65. Similar to the GABAergic neurons B34 and B40 described above, B65 is a dorsal cell that projects to the cerebral ganglion via the contralateral C-b connective. B20 is a bipolar ventral cell that projects to both C-b connectives. To the extent that their anatomy can be determined from our experiments, the positions, shapes, and projections of the GABA| – THI cells observed in the panpulmonates are highly similar to the morphological properties of the GABA-DA neurons in Aplysia.

B20 and B65 are capable of initiating coordinated buccal motor patterns (Kabotyanski et al., 1998; Teyke et al., 1993). Moreover, each is thought to play a critical role in determining the functional output of the feeding CPG (Due et al., 2004; Jing & Weiss, 2001; Kabotyanski et al., 1998; Proekt et al., 2004). Rapid excitatory postsynaptic potentials (EPSPs) produced by both B65 and B20 in buccal motor neuron targets were occluded by dopamine, but not GABA, and blocked by the dopamine antagonist sulpiride (Due et al., 2004; Díaz-Ríos & Miller 2005). It was therefore proposed that these rapid EPSPs were mediated by dopamine. GABA, acting through GABAB-like receptors and protein kinase C, was shown to modulate the rapid dopaminergic EPSPs in a target specific manner (Díaz-Ríos & Miller, 2005, 2006; Svensson et al., 2014). The comprehensive understanding of the anatomy, physiology,

FIGURE 10 | Comparison of GABA| and THI in the buccal ganglion of Helisoma trivolvis. (a) A prominent system of GABA| fibers courses through the buccal commissure (B c.). One cell body was located slightly posterior to the central neuropil in each hemiganglion (arrows). (b) One THI neuron was located in the medial region of each hemiganglion (arrows). (c) Merge of images (a) and (b) confirmed that GABA| and THI are colocalized in the two ventral cell bodies. Calibration bar = 100 μm applies to (a–c). (d) Three to four GABA| cell bodies were observed on the dorsal surface of the Helisoma buccal ganglion, including two lateral cells (arrows) and one unpaired cell in the right hemiganglion near the B c. (arrowhead). A process projected in the anteromedial direction toward the buccal commissure (arrow). (e) THI in the same field of view as (d). (f) Merge of (d) and (e) confirms colocalization of GABA| and THI in the two lateral cells (arrows) and the unpaired cell (arrowhead). Calibration bar = 100 μm, applies to (d–f). (g) Higher magnification of the unpaired GABA| neuron. (h) Unpaired THI neuron. (i) Merge of (g) and (h) confirms GABA|–THI colocalization. Calibration bar = 30 μm applies to (g–i) [Color figure can be viewed at wileyonlinelibrary.com]
and function of B20 and B65 provides a contextual framework for characterizing the GABA-DA phenotype in panpulmonates. To date, the unpaired GABAli – THli neuron in the Aplysia buccal system remains unidentified. Unpaired buccal cells have been characterized in gastropod buccal systems, including the ‘slow oscillator’ (SO) neuron of Lymnaea (Elliott & Benjamin, 1985) and B50 in Aplysia (Dembrow et al., 2003). The medial bipolar unpaired GABAli-THli cells observed here in the panpulmonates are unlikely to correspond to SO or B50 which are located in the lateral region of the ganglion and project a single process that crosses the buccal commissure. Moreover, pharmacological evidence indicates that SO and B50 are both cholinergic. It is noteworthy that the unpaired cell soma in the pulmonates examined here was located in the right hemiganglion of the sinistral species Biomphalaria and Helisoma and in the left hemiganglion of the dextral species Lymnaea.

4.3 | Implications for a conserved feeding central pattern generator in gastropods

The motor circuits that generate feeding in gastropods have been intensively studied in species that employ highly diverse ingestive...
behaviors (e.g. Arshavsky, Gamkrelidze, Orlovsky, Panchin, & Popova, 1991; Benjamin et al., 2000; Kupfermann, 1974). Comparative studies of gastropod feeding networks can thus provide insight into circuit elements that are conserved and those that are modified to adapt to changing demands (Elliott & Susswein, 2002; Katz & Harris-Warrick, 1999; Murphy, 2001; see Paul, 1991).

Murphy (2001) advanced the 'universal tripartite model' for the feeding central pattern generator circuits of gastropod molluscs, and proposed homology between specific core interneurons in several species (see also Wentzell et al., 2009). Among the proposed homologies, the B20 and B65 neurons of Aplysia were hypothesized to correspond to identified neurons in the panpulmonates Lymnaea stagnalis and Helisoma trivolis (Murphy, 2001). These homologies were based upon cell location, morphology, synaptic connections, CPG function, and dopaminergic phenotype. The present study adds GABA-like immunoreactivity to these shared features and supports the notion of a common CPG core underlying highly variable gastropod feeding behaviors.

The presence of five GABAli-THli neurons in the feeding networks of three panpulmonate species suggests that this colocalization predates the divergence of the eupodisthobranch and panpulmonate groups. Molecular clock analysis estimates that this divergence occurred approximately 237 Mya near the Permian/Triassic transition. The recent localization of GABAli in the buccal ganglia of Nudiopleura (Gunaratne & Katz, 2016) sets the stage for exploring whether GABA-DA colocalization predated divergence of the Tectipleura and Nudiopleura groups. This avenue of investigation should provide opportunities to explore the functional consequences of classical neurotransmitter colocalization in identified neurons and tractable motor networks (Miller, 2009). This approach should also inform our understanding of cotransmission by classical neurotransmitters in more complex vertebrate nervous systems.

ACKNOWLEDGMENTS

National Institutes of Health: RCI MD007600, MBRS GM087200; National Science Foundation: DBI-1337284, HRD-1137725, OISE 1545803; National Academy of Sciences (NAS; USA) U.S.-Egypt Science and Technology (S&T) Joint Fund 2000007152*; Science and Technology Development Fund (STDF, Egypt): USC17–188; Natural Sciences and Research Council (Canada): Discovery Grant 38863.

ORCID

Mark W. Miller http://orcid.org/0000-0002-1237-9631

REFERENCES

Hurwitz, I., Kupfermann, I., & Susswein, A. J. (1997). Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica. Journal of Neurophysiology, 78, 1305–1319.

Osborne, N. N., Briel, G., & Neuhoff, V. (1971). Distribution of GABA and other amino acids in different tissues of the gastropod mollusc.
Helix pomatia, including in vitro experiments with 14C glucose and 14C glutamic acid. International Journal of Neuroscience, 1, 256–272.

How to cite this article: Vaasjo LO, Quintana AM, Habib MR, Mendez de Jesus PA, Croll RP, Miller MW. GABA-like immunoreactivity in Biomphalaria: Colocalization with tyrosine hydroxylase-like immunoreactivity in the feeding motor systems of panpulmonate snails. J Comp Neurol. 2018;00:1–16. https://doi.org/10.1002/cne.24448